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Abstract

Linear GARCH(1, 1) and threshold GARCH(1, 1) processes are established as regularly vary-
ing, meaning their heavy tails are Pareto like, under conditions that allow the innovations from
the, respective, processes to be skewed. Skewness is considered a stylized fact for many financial
returns assumed to follow GARCH-type processes. The result in this note aids in establishing
the asymptotic properties of certain GARCH estimators proposed in the literature.
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1. Introduction

Generalized autoregressive conditional heteroskedastic (GARCH) models are a workhorse for

conditional variance forecasting in financial economics. The linear GARCH(1,1) model of Bollerslev

(1986) is a popular choice amongst practitioners, owing, in part, to its (relative) simplicity, but also

to its strong forecasting performance, generally, and superior performance, specifically, on foreign

exchange rate returns against more complicated alternatives (see; e.g., Hansen and Lunde, 2005). It

is widely recognized that the conditional variance of equity returns tends to be asymmetric.3 This

feature, sometimes referred to as a "leverage effect," is captured by threshold GARCH models,

Glosten, Jagannathan, and Runkle (1993), hereafter GJR GARCH, being one-such example. In

out-of-sample forecast evaluations using equity returns, GJR GARCH(1, 1) is shown to improve

upon the linear GARCH(1, 1) specification (Hansen and Lunde, 2005). As a consequence, the linear

GARCH(1, 1) and GJR GARCH(1, 1) models represent (very) popular choices among academics

and practitioners alike for characterizing the conditional variance of financial returns.

Linear GARCH processes are shown to be regularly varying (see Basrak, Davis, and Mikosch,

2002), meaning their tails are heavy and Pareto like. Mikosch and Stărică (2000) study the linear

GARCH(1, 1) case in detail and demonstrate it to be regularly varying under the condition that the

model’s innovations follow a symmetric distribution.4 They do not consider the GJR GARCH(1, 1)

specification. Table 1 summarizes the skewness statistics on various (very) high frequency eq-

uity and foreign exchange rate returns. Evident from the table is that these statistics tend to be

large in absolute terms and (highly) statistically significant, a tendency suffi ciently prevalent to

render skewness a stylized fact for many financial returns. Under either the linear GARCH(1, 1)

or GJR GARCH(1, 1) model, skewness in returns necessarily sources to the given model’s inno-

vations. Skewness in these innovations conflicts with the aforementioned demonstration that a

linear GARCH(1, 1) process is regularly varying. Moreover (to the best of my knowledge), such

a demonstration (regardless of the treatment of the model’s innovations) is not extended to the

GJR GARCH(1, 1) case. As a consequence, this note establishes linear GARCH(1, 1) and GJR

GARCH(1, 1) processes as regularly varying, where this result does not depend on the given model’s

innovations being symmetrically distributed. Besides being interesting in its own right, this result

also aids in establishing the large-sample properties of the linear GARCH(1, 1) estimators discussed

3That is, tomorrow’s variance tends to be higher (all else equal) if today’s return is negative.
4Davis and Mikosch (1998) conduct an equally-detailed study of the linear ARCH(1) case, demonstrating it to be

regularly varying under the same condition.
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in Mikosch and Straumann (2002), Kristensen and Linton (2006), and Vaynmann and Beare (2014).

2. Regular Variation

Consider the GARCH model of

Yt = σtεt, εt ∼ i.i.d. D (0, 1) , (1)

where

σ2t = ω + α1Y
2
t−1 × I{Yt−1≥0} + α2Y

2
t−1 × I{Yt−1<0} + βσ

2
t−1. (2)

Given (1), the general model under consideration follows the Drost and Nijman (1993) definition of

a strong GARCH process. Given (2), if α1 6= α2, the specific model is GJR GARCH(1, 1). Under

the special case where α1 = α2, the specific model is linear GARCH(1, 1). Recasting (2) as

σ2t = ω + σ2t−1
(
γt−1ε

2
t−1 + β

)
, γt−1 = α1 × I{Yt−1≥0} + α2 × I{Yt−1<0},

= ω + σ2t−1At

represents the GARCH process as a stochastic recurrence equation (SRE), which is important for

establishing {(Yt, σt)}t∈Z as regularly varying.

For a fixed and non-negative h, let

Y = Yt =
(
(Yt, σt) , . . . ,

(
Yt+h, σt+h

) )
.

This section demonstrates that Y is regularly varying with (tail) index κ, or, using shorthand

notation, Y is RV(κ). That is, there exists a sequence of constants {an} such that

nP (|Y| > an) −→ 1, n→∞,

where |·| denotes the max norm, an = n1/κL (n), and L (·) is slowly-varying at ∞.

ASSUMPTION A1: The distribution D has an unbounded support, and E |εt|
i+δ < ∞ for

i ≥ 2 and some δ > 0.

ASSUMPTION A2: ω ≥ ω > 0, αj > 0 for j = 1, 2, and β > 0.
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ASSUMPTION A3: E
(
Alt
)
< 1 for l ∈

[
1, i

2

]
, where i is defined in A1.

The moment existence condition in A1 is (fairly) standard (see; e.g., Lee and Hansen, 1994,

Berkes, Horváth, and Kokoszka, 2003, and Berkes and Horváth, 2004). The novelty of A2 is

the strictly positive, lower-bound for ω (see Kristensen and Rahbek, 2005). Establishing regular

variation for {Yt} relies on taking a first-order Taylor Expansion around this lower bound; see (7).

Notice, as well, the strict positivity of all model parameters, thus excluding the ARCH(1) case.

In order to establish {Yt} as regularly varying in the special case where β = 0, see Prono (2016).

Under A3, (at least) E
(
Y 2t
)
< ∞ (see; e.g., Loretan and Phillips, 1994, for empirical evidence

supporting this condition for various stock and foreign exchange rate returns). A3 is suffi cient for

{(Yt, σt)} to be strictly stationary (see; e.g., Mikosch, 1999, Corollary 1.4.38 and Remark 1.4.39).

{(Yt, σt)} is also strong mixing by Carrasco and Chen (2002, Corollary 6) when α1 = α2, and

Carrasco and Chen (2002, Corollary 10), otherwise.

A1 and A3 together distinguish {εt} as being thinner tailed than {σt}. As a consequence,

regular variation of {Yt} stems directly from {σt}, as is also the case in Davis and Mikosch (1998),

Mikosch and Stărică (2000), and Basrak et al. (2002). The generality of A1 and A3 includes the

baseline case of a covariance-stationary GARCH(1, 1) process, but also covers the higher-moment

existence conditions necessary in Mikosch and Straumann (2002), Kristensen and Linton (2006),

and Vaynaman and Beare (2014).

PROPOSITION. For the GARCH model of (1) and (2), let Assumptions A1—A3 hold, and con-

sider

Y =
(
(Y0, σ0) , . . . , (Yh, σh)

)
for a fixed h ≥ 0. Then Y is RV (κ).

REMARK. In the proof that follows, C denotes a generic constant that can assume different

values in different places.

Proof. Since At is (strictly) positive ∀ t,

P (σ > x) ∼ cx−κ, x→∞, (3)

where c = c (ω, α1, α2, β), the precise value of which is given in Goldie (1991), and κ ∈ (2, κ], where
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κ is an upper bound, is the unique solution to

E (A)κ/2 = 1,

by Kesten (1973, Theorem 4). Next, for

θ = (ω, α1, α2, β) , θ = (ω, α1, α2, β) ,

define

σ2t ≡ σ2t (θ) = ω + γt−1Y
2
t−1 + βσ

2
t−1,

and σ2t ≡ σ2t (θ) analogously. Also define

α ≡ max (α1, α2) ≥ γt−1 ∀ t. (4)

Then
∂σt
∂ω

=
∂
√
σ2t

∂ω
=
1

2
× σ−1t ×

∂σ2t
∂ω
≤ 1
2
× σ−1t ×

1

1− β , (5)

where the inequality follows from Lumsdaine (1996, Lemma 1, A1.2). Also, using recursive substi-

tution,

σ2t − σ2t = (ω − ω)
t−1∑
i=0

βi +
(
σ20 − σ20

)
βt ≤ ω − ω

1− β . (6)

Consider a first-order Taylor Expansion of σt around ω such that

σt = σt +
∂σt
∂ω

(ω − ω) (7)

≤
γt−1Y

2
t−1 + βσ

2
t−1

σt
+ Cσ−1t

≤ C ×
(
γt−1Y

2
t−1 + βσ

2
t−1

σt

)
≤ C ×

(
γt−1

(
σ2t−1 + C

)
ε2t−1 + βσ

2
t−1

σt

)

≤ C ×
(
σ2t−1

(
αε2t−1 + β

)
σt

+ C ×
ε2t−1
σt

)

≤ C ×
(
σt−1At + C ×

ε2t−1
σt

)
,
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where the first inequality relies on (5) , the second on σ−1t being bounded and β > 0, the third on

(6), the fourth on (4), and the fifth on σt > β1/2σt−1. Consider next

σt−1
σ0
≤
σt−1
σ0

.

For

σ1
σ0

≤ σ1
σ0

≤
(
ω + σ20A1

)1/2
σ0

≤ ω + σ0A
1/2
1

σ0

≤ C ×A1/21 ,

where the third inequality follows from the Triangle Inequality, and the fourth from σ−10 being

bounded and β > 0. Parallel reasoning produces

σ2
σ0

≤ σ2
σ0

≤
(
ω + σ21A2

)1/2
σ0

≤ C ×
(
σ1
σ0

)
×A1/22

≤ C ×A1/21 ×A1/22 .

Suppose then that
σt−2
σ0
≤
σt−2
σ0
≤ C ×

t−2∏
i=1
A
1/2
i . (8)

From (8) follows that

σt−1
σ0

≤
σt−1
σ0

(9)

≤ ω1/2

σ0
+

(
σt−2
σ0

)
×A1/2t−1

≤ C ×
t−1∏
i=1
A
1/2
i .
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Then

Y =
(
σ0 (ε0, 1) , σ1 (ε1, 1) , σ2 (ε2, 1) , . . . , σh (εh, 1) ,

)
≤ σ0 ×

(
(ε0, 1) , C ×

(
σ0
σ0

)
×A1 (ε1, 1) , C ×

(
σ1
σ0

)
×A2 (ε2, 1) , . . . , C ×

(
σh−1
σ0

)
×Ah (εh, 1) ,

)
+R

≤ σ0 ×E+R,

where

E =

(
(ε0, 1) , C ×A1 (ε1, 1) , C ×A1/21 A2 (ε2, 1) , . . . , C ×

(
h−1∏
i=1

A
1/2
i

)
Ah (εh, 1)

)
,

with

Ah = αε2h−1 + β ∀ h ≥ 1,

given (7) and (9), and

R =
(
0, C

σ1
× ε20 (ε1, 1) , C

σ2
× ε21 (ε2, 1) , . . . , C

σh
× ε2h−1 (εh, 1) ,

)
given (7). Let Z = σ0 × E + R. Because σ−1h is bounded ∀ h, the tail of R is ‘light’relative to

the tail of σ0 × E. As a consequence, the tail of Z is determined by the tail of σ0 × E. Then,

since E
(
|Eh|

κ+ε) < ∞ ∀ h and some ε > 0, σ0 × E is RV(κ) by (3) and Basrak et al. (2002,

Corollary A.2) with d = 1, which means that the tail of Z is determined by the tail of σ0. Since

Y = σ0 ×D ≤ σ0 ×E+R, the tail of Y is also determined by the tail of σ0, which implies, then,

that Y is RV(κ).

Let

Y2 =
( (

Y 20 , σ
2
0

)
, . . . ,

(
Y 2h , σ

2
h

) )
.

The (general) method of proof behind the Proposition is comparable to those methods used to

establish Y2 as RV(κ/2) in Davis and Mikosch (1998, Lemma A.1) and Mikosch and Stărică (2000,

Theorem 2.3). In contrast to these two aforementioned results, however, moving to establish Y as

RV(κ) does not require a symmetric D. As a consequence, the Proposition is consistent with the

empirical features (see Table 1) of many financial returns to which the model of (1) and (2) gets

applied and is complementary to Basrak et al. (2002). Moreover, the Proposition explicitly covers
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a threshold GARCH(1, 1) model under empirically-relevant cases.
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TABLE 1

CHF EUR JPY DJIA SPX
freq. obs. skew. obs. skew. obs. skew. obs. skew. obs. skew.

1-min 174,741 0.41 190,338 -1.27 190,058 -1.59 46,557 -1.25 46,551 -1.75
(0.01) (0.01) (0.01) (0.01) (0.01)

5-min 34,973 0.35 38,081 -0.30 38,035 -1.20 9,315 -2.68 9,312 -3.17
(0.01) (0.01) (0.01) (0.03) (0.03)

10-min 17,489 0.55 19,044 -1.26 19,021 -0.75
(0.02) (0.02) (0.02)

15-min 11,660 0.14 12,699 -0.78 12,680 -0.73
(0.02) (0.02) (0.02)

20-min 8,747 -0.05 9,525 -0.50 9,512 -0.49
(0.03) (0.03) (0.03)

Notes to Tables 1. All data source to Bloomberg LP. The date range for the Swiss

Franc (CHF) spot return series is 1/16/2015—7/1/2015. The date range for the Euro (EUR)

and Japanese Yen (JPY) spot return series is 1/1/2015—7/1/2015. The date range for the

Dow Jones Industrial Average (DJIA) and S&P 500 (SPX) spot return series is 7/19/2015—

12/31/2015. Skew is an estimate of the (unconditionally) standardized third moment. The

standard error for this estimate is in parentheses and is measured against a null of normality,

as in Cambell, Lo, and MacKinlay (1997).
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